MODEL PAPER MATHEMATICS CLASS 10

NOTE: Attempt all questions of Section-A by filling the corresponding bubble on the **MCQs RESPONSE SHEET.** It is mandatory to return the attempted MCQs sheet to the Superintended within given time.

SECTION -A

Time: 20 Minutes

Marks: 15

1. The quadratic equation in the following is:

A. $x^4 + 11x^2 + 9 = 0$ B. $x^3 + 11x^2 + 9 = 0$ C. $x^3 + 11x + 9 = 0$ D. $x^2 + 11x + 9 = 0$

2. The solution set of $2x^2 - 9x + 5 = 0$ is:

A.
$$\left\{\frac{-9\pm\sqrt{41}}{4}\right\}$$

B. $\left\{\frac{9\pm\sqrt{41}}{4}\right\}$
C. $\left\{\frac{-9\pm\sqrt{41}}{2}\right\}$
D. $\left\{\frac{-9\pm\sqrt{41}}{2}\right\}$
3. $\frac{1}{\alpha} + \frac{1}{\beta} =$
A. $\frac{1}{\alpha\beta}$
B. $\frac{1}{\alpha+\beta}$
C. $\frac{\alpha\beta}{\alpha+\beta}$

D.
$$\frac{\alpha+\beta}{\alpha\beta}$$

4. The discriminant of equation $x^2 + 6x + 2 = 0$ is equal to:

- A. 8
- B. 28
- C. 36
- D. 44

5. Direct variation between p and q can be expressed as:

A. p = qB. $p = \frac{1}{q}$ C. $p \propto q$ D. $p \propto \frac{1}{q}$

- **6.** In continued proportion p: q = q: r, r is called as:
 - A. first proportional to p, q.
 - B. second proportional to p, q.
 - C. third proportional to p, q.
 - D. fourth proportional to p, q.

7. $\frac{x^2+1}{x+1}$ is an example of:

- A. proper fraction only
- B. improper fraction only
- C. both proper and rational fraction
- D. both improper and irrational fraction

8. The set of the whole numbers (W) in the following is:

- A. {0,1,2,3, }
- B. $\{0, \pm 2, \pm 4, \dots, \}$
- C. {1,2,3, }
- D. $\{0, \pm 1, \pm 2, \pm 3, \dots, \dots\}$
- **9.** The range of $R = \{(1,2), (2,2), (3,1), (4,4)\}$ is:
 - A. {1,3,4}
 - B. {1,2,4}
 - C. {2,3,4}
 - D. {1,2,3,4}

10. If $A = \{1,2,3,4\}$ and $B = \{5,6,7,8\}$, then which of the following binary relations is a function from *B* to *A*?

- A. $R = \{(1,5), (2,6), (3,7), (4,8)\}$
- B. $R = \{(1,6), (2,5), (4,8), (4,7)\}$
- C. $R = \{(5,1), (6,2), (7,3), (8,4)\}$
- D. $R = \{(5,2), (6,1), (8,4), (8,3)\}$

11. The value that appears more times in a data is called:

- A. mean
- B. median
- C. mode
- D. variance

12. In the given set of data, 71, 73, 79, 77, 76, 75, 80, the median is:

- A. 73
- B. 76
- C. 77
- D. 79

13. In radians, 45° is equal to:

A. $\frac{\pi}{2}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{6}$ 14. $1 + \cot^2 \theta =$ A. $\sin^2 \theta$ B. $\cos^2 \theta$ C. $\tan^2 \theta$ D. $\csc^2 \theta$

15. The number of circles that can pass through three non-collinear points is:

- A. 0
- **B**. 1
- **C**. 2
- D. 3

SECTION-B

Time: 2 Hours 40 Minutes

- 1. Attempt any NINE of the following short questions. Each question carries 4 marks.
 - i. Derive quadratic formula for $ax^2 + bx + c = 0$ where $a \neq 0$, by using completing square method.
 - ii. Solve $4.2^{2x} 10.2^x + 4 = 0$.
 - iii. Find the cube roots of 64.
 - iv. If α , β are roots of $x^2 4x + 2 = 0$, find the equation whose roots are $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$.
 - v. Find the mean proportional of $a^2 b^2$ and $\frac{a+b}{a-b}$.

vi. Resolve into partial fraction $\frac{4x+2}{(x+2)(2x-1)}$.

vii. If $U = \{1, 2, 3, \dots, 10\}$, $A = \{2, 4, 6, 8, 10\}$ and $B = \{1, 3, 5, 7, 9\}$, then verify

 $(A\cup B)'=A'\cap B'.$

- viii. A set of data contains the values as 105,80,90,75,100,105 and 110. Show that Mode > Median > Mean.
- ix. An arc of a circle subtends an angle of 2 radians at the center. If the area of sector formed is $64cm^2$, find the radius of the circle.
- x. Prove that: $cosx cosx sin^2 x = cos^3 x$.
- xi. \overline{AB} and \overline{AC} are tangent segments to the circle with centre *O*. If $m\overline{OB} = 6cm$ and $m\overline{OA} = 10cm$, then find $m\overline{AB}$ and $m\overline{AC}$.
- xii. Prove that equal chords of a circle subtend equal angles at the center. Prove for only one circle.

SECTION-C

Marks: 24

NOTE: Attempt any **THREE** of the following questions. Each question carries 8 marks.

- **2.** In $\triangle ABC, m\overline{AB} = 8cm, m\overline{BC} = 12cm, m \angle B = 100^{\circ}$. The projection of \overline{BC} on \overline{AB} is 6cm. Find $m\overline{AC}$.
- **3.** Prove that If two chords of a circle are congruent then they will be equidistant from the center.
- 4. Prove that the angle in a semi-circle is a right angle.
- **5.** Construct a triangle with sides 4 cm, 4.5 cm and 5 cm. Also draws its circumcircle.

Marks: 36